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THE IMPLEMENTATION OF A BLOCK LANCZOS ALGORITHM

WITH REORTHOGONALIZATION METHODS

ROGER G. GRIMES', JOHN G. LEWIS t AND I-IORST D. SIMON _

Abstract. In this paper we describe a block Lanczos algorithm with partial :eorthogonalization"

and external selective orthogonalisation. The block Lancsos recurrence developed here is used as the

key building block of a software package for the extraction of eigenvalues and eigenvector of large

sparse symmetric generalized eigenproblems, l_articularly structural engineering applications. This
paper describes the algorithmic details of our implementation, which includes a novel combination

of several features that have only been investigated independently in the past: a block recurrence,

partial reorthogonalisation and various other reorthogonal_ations to guarantee the orthogonality of
the Lancsos vectors, the integration with an automatic shift strategy, and the unified treatment of

generalized eigenvalue problems arising both in vibration and buckling problems.

Key Words. Lsncsos algorithm, sparse eigenvalue problems, structural analysis, symmetric gen-

eralized eigenvalue problem, orthogonalisation methods
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1. Introduction. The Lanczos algorithm [21] is a very powerful tool for extracting

some of the extreme eigenvalues of a real symmetric matrix A, i.e. to find the largest

and/or smallest eigenvalues and vectors of the eigenvalue problem

Az = Az.

Following P_ige's thorough analysis of the roundoff properties of the Lanczos algorithm

in finite precision [28],there has been a lively interest in this algorithm in the numer-

ical analysis community and more recently also in various application areas such as

structural engineering (see [5,20,30] and the references therein). Over the years several

research codes have been published for the solution of sparse eigenvalue problems based

on the Lanczos algorithm [6,12,22,27,34]. Each of these codes addresses some of the

difficultiesin implementing the Lanczos algorithm in finiteprecision arithmetic. How-

ever, none provides a complete solution for the difficultproblems encountered in solving

structural engineering problems in a production setting.

In order to apply the Lanczos algorithm to vibration and buckling problems in

structural analysis, one must account for several difficultieswhich can arise in these

problems:

I. multiple eigenv'-_luesare a common occurrence

2. frequently there are significant input/output costs for accessing the matrices

involved,
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3. in these generalized eigenvalue problems, possibly one or both of the matrices

are semidefinite; indefinite matrices also occur

4. usually the required eigenvalues are poorly separated

In order to deal with (1) and (2) efficiently, a block Lanczos algorithm is considered

here. Block algorithms have been considered by a variety of researchers [4,22,15]; Scott's

LASO code is based on a block algorithm as well [34]. A derivation of the block Lanczos"

algorithm and its general theory are given in §2.

Problems (3) and (4) require the use of a shifted and inverted operator. Scott's

code leaves the decision for the shift and invert strategy completely to the user. The

STLM code by Ericsson and Ruhe [10] is the first to implement an automatic shifting

strategy for the vibration problem combined with the Lanczos aJgorithm. However, it

does not handle multiple eigenvalues well [25], and it does not solve buckling problems.

§3 explains how to form the shifted and inverted operators for both vibration and

buckling analysis, and what modifications to the Lanczos recurrence result. One of the

major problems is the fact that vectors have to be orthonormalized with respect to

an inner product defined by a positive definite matrix M. A discussion of the issues

associated with the M-orthonormalization of vectors, especially how to implement it in

the context of the Lanczos algorithm is given in §4. The further precautions to allow

cases where M induces only a semi-norm are also addressed in this section.

The block Lanczos recurrence by itself produces only a block tridiagonal matrix T.

§5 describes how eigenvalue and vector approximations are computed from T and the

Lanczos vectors. Some error bounds on these approximations are given as well.

In order to deal with the effects of finite precision arithmetic, several reorthog-

onalization schemes have been implemented for the block Lanczos algorithm. These

schemes, together with some theoretical justification, are discussed in §6. §7 deals with

the question of deciding when to terminate a Lanczos run. The performance of the

block Lanczos recurrence in the context of an automated shift strategy, and coupled

with efficient sparse matrix solver is discussed in §8.

The intent of this paper is to present the algorithms used in the implementation of

the block Lanczos recurrence. The mathematical software aspects of the block Lanczos

solver, such as the automatic shifting strategy, the optimal stopping heuristic for an

individual Lanczos recurrence, and the integration with structures packages is discussed

in detail in the companion report [18].

2. The Block Lanczos Recurrence for Hz = Az . In order to simplify the

discussion of the block Lanczos algorithm we consider the simple eigenvalue problem

(1) //z =

where H is a real symmetric linear operator. An important fact is that /f does not

need to be known explicitly for the application of the Lanczos algorithm. Spectral

transformations typically give rise to problems where H is a product of sparse matrices

and inverses of sparse matrices. However, neither the inverse matrices nor the product

itself are actually computed. All that is required is a subroutine that computes Hy for

a given vector ?/. This allows us to discuss the block Lanczos recurrence for a symmetric
2



operator H in all generality, whereas in the next section we will be more specific about

the choice for H in the case of a vibration or buckling analysis.

The block Lanczos iteration with blocksize p for an n x n matrix H is given as

follows:

Algorithm 1. Basic Block Lanczos Algorithm.

I) InitiaLization:

Set Q0 -- 0,

Set Bx = 0,

Choose R1 and orthonormalize the columns of R1 to obtain Qx.

2) Lanczos Loop:

For j = 1, 2, 3... mazstp do

Us = HQj-Qi_IB r

Aj r=QsUj
Rj+ = Ui- QjAj
Qj+xBs+I = Rs+x (orthogonalfactorizationof RS+I )

End loop

The matrices Qs, Uj, Rj for j - 1,2,... are n x p, Aj and Bj are p x p, A s is

symmetric and Bj is upper triangular. The matrices Qs have orthonormal columns.

The columns of Rj+x are orthonormalized in the last step of the Lanczos loop. The

orthonormalization procedure is discussed in more detail in §4. For the discussion here,

it suffices that there always exists an upper triangular p x p matrix Bs+x and an n × p

matrix Qj+I with orthonormal columns so that Qj+xBj+x = Rj+x.

This formulation of the Lanczos loop is the one least susceptible to round off errors

[29]. The order of the computation is, however, immaterial for the following analysis.

Therefore, Uj and Rj+x can be eliminated from the Lanczos loop and the recurrence
formula becomes

(2) Qj+I_j+I --_ HQj - QjAj - Qj-xB_.

We now show that the combined column vectors of the matrices Qx, Q2,... Qj, the so

called Lanczos vectors, form an orthonormal set. This is a remarkable result, since

the loop of the Lanczos algorithm does not involve explicit orthogonalizations to the

earlier Lanczos vectors. This material is quite standard, but included here to make the

discussion of reorthogonalization methods easier.

The column vectors of Qt are orthonormal by construction, and so are the columns

of Q2, Qa-.. etc. We only have to show that

QTQ . = O,for i # k.

Let us first show that TQjQj+x 0 and T= Qs-xQJ+x = 0 by induction over j. For j = 1:

QTQ2B2 = QTHQx - QTQxA x

= Ax -A1 =0.

3



For j _> 2, assume the result holds for all i < j:

T
Qj Qj+xBj+I

T
Q_-I Q_÷x B_+I

T T A T rQ //Qi Qj QJ= -- -QjQj_xB$

= Ai-A_=O

r T f_T f_ BT= Qi_xHQj - Q_-IQ_A_ ,_j__j-x j

r H - == Qj aT o,

if Bj r= Qj HQj_x. But this follows by writing formula (2) for i = j - 1 and premul-

tiplying it by QT. This shows that the"matrices Qj are locally orthogonal. As a side

result, B_ T--- qj J_Q_-I"

Finally, to prove global orthogonalJty, we show that

QTQj+I = 0 for i = 1,2,...j- 1.

This is again shown by induction on j. First, by local orthogonality, QrQ1 = 0. Assume

then that it has been shown that QTQj = 0 for all i = 1,2,...j - 2. It remains to be

shown that Qr_Q_+x = 0 for i = 1,...j - 1. Premultiply (2) by Q T to obtain:

T
Q, Qj+xBj+x = QTHQj - QTQjAi-Q, Qj-xBjr r

= QTHQI

Now equation (2) is transposed to substitute for Qr_H:

T
Q, Qj+xB_+x = (Q,+xB_+, + Q,A_ + Q,_xB_)rQj = o,

where by induction, the terms on the fight all drop out.

Hence the Lanczos vectors form an orthonormal set of vectors. The computational

efficiency of the Lanczos algorithm rests on the fact that these vectors can be computed

with a simple recurrence and with a fixed amount of work per iteration step.

The blocks of Lanczos vectors can now be grouped together as the columns of an

n × jp matrix Qj, where

= [Q1,q,, q3,.., qj].

Also define the block trldi&gonal matrix Tj by

(3) Tj =

Ax B_ 0

B2 A2 Bsr

*- ", e. °

o ... Bi-,
0 ... 0

.., 0

o.* 0

Aj__ B r

Bj Aj

Tj is a jp x jp matrix. Since the matrices Bj are upper triangular, Tj is a band matrix

with half band width p + 1 (rather than 2p, if the B1 were full).

The first j instances of formula (2) can now be combined into a single formula:

(4) HQ_ = Q_Tj + qj+lBj+lE r.
4



Here Ej is an n x p matrix whose last p x p block is the p x p identity matrix and which

is zero otherwise. Formula (4) is a compact way of expressing the Lanczos recurrence,

and will be used throughout this discussion.

By premultiplying (4) by Q_" and using the orthogonality of the Lanczos vectors,
it follows that

Hence Tj is the orthogonal projection of H onto the subspace spanned by the columns

of Q_. For p = 1, this space is called the K_lov subspace Kj(H; ql). It can be shown

by induction that

(5) 8pan( Q.j) = span( Q_, HQx, H2Q2, . . . H j-_ Q_ ),

where span (.) denotes the subspace spanned by the columns of the matrices involved.

In particular, it follows from (5) that for p = 1

K,(_; ql) = span(q_,Hql, _" ql, • ••_- 1ql).

From a different perspective, the (block) Lanczos algorithm is a method for constructing

an orthonormal basis for the (block) Krylov subspace determined by H and Q1- This

basis of Lanczos vectors is distinguished by the fact that the orthogonal projection of

H onto the (block) Krylov subspace is given by a (block) tridiagonai matrix. Hence the

eigenvalues of T_ are the Rayleigh-Pdtz approximations from span(Q._) to the eigenval-

ues of H. In addition, if s is an eigenvector of Tj, the vector y = Q_s is an approximate

eigenvector of H. Viewed in this form, the Lanczos algorithm replaces a large and dim-

cult eigenvalue problem involving H by a small and easy eigenvalue problem involving

the block tridiagonal matrix T i.

How good are the approximations obtained by solving the block tridiagonaJ eigen-

value problem involving the matrix T_? An a posteriori bound on the residual can be

obtained as follows: Let 0, 8 be an eigenpair for Tj, i.e.,

and let

then

Tj$ -- sO

y = Q_8,

I1_ - roll = IIHQ_ - QjsOII
= IIQ_Tj_+ Qj+,Bi+,ETs - Qj_OII
= IIBj+_E_'sll= IIBj+_s_ll,(6)

where s t are the last p components of the eigenvector s.

The quantity IIBj+_s_llcan be computed without computing the approximate eigen-

vector y. Hence, with some modifications described in §5, (6) provides an inexpensive

posteriori error bound.

Formula (6), however, does not guarantee that good approximations to eigenpairs

will appear quickly. Such a priori estimates are provided by the Kaniel-Paige-Saad

theory. For a detailed discussion, see references [30,33].
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3. The Spectral Transformation Block Lanczos Algorithm. The eigenvalue

problem in vibration analysis is given as

(7) Kz = AMz,

where K is a symmetric matrix, and M is a positive semidefinite matrix. One might

be tempted to reduce the generalized eigenvalue problem (7) to a standard eigenvalue

problem and then apply the Lanczos algorithm. There are two good reasons not to do

this: first, M cannot be factored if it is tt3dy semidefinite, and second, the typical eigen-

value distribution for a vibration problem would make this approach very inefficient.

Usually only the smallest eigenvalues of (7) are wanted. Although these lie at one end

of the spectrum, they are commonly very poorly separated. A typical distribution of

eigenvalues in a vibration problem would have the required eigenvalues of order 1, but

the largest eigenvalue of the problem may be of order l0 s. The a priori estimates in

[30] give the rate of convergence for computing the smallest eigenvalue to be bounded

by (1 - 10-s). This predicts very slow convergence which is observed in practice. This

slow convergence necessitates the application of a shift and invert strategy.

Consider the problem

(8) M(K - cM) -t Mz=#Mz,

where a is a real parameter. Assume for the moment that M is positive definite; the

complications introduced by a semidefinite M will be discussed later. It is easy to

verify that (A, z) is an eigenpalr of (?) if and only if t(__---_,z) is an eigenpair of (8).

Hence, the transformation of the eigenvalue problem from (7) to (8) does not change

the eigenvectors, and the eigenvalues are related by

1

(9) A-o-"

This is the so called spectral transformation [11,35]. The advantage of applying the

Lanczos algorithm to (8) instead to (7) becomes clear when the effect of the spectral

transformation on the spectrum is considered. Figure 1 illustrates the transformation,

where for simplicity the shift o"is taken at zero.

Note in Figure 1 that the desired eigenvalues A4 to As, which are clustered and

small, are transformed to #4 to #s, which are well separated and large. This spread of

the eigenvalues ensures rapid convergence.

The primary price for this rapid convergence is the cost of a factorization of

K - crM. Of course, we never form the actual transformation M (K - ¢r M) -t M

explicitly, because it is almost certainly a dense matrix. Instead the transformation is

realized implicitly as a sequence of operations, computing MQ for a block of vectors Q,

or solving the linear systems (K - a M)X = Q. In practice, these operations are re-

allzed by separate subroutines. This modularity allows tuning the matrix factorization

and multiplication routines to the class of problem under consideration.

An additional cost introduced by this spectral transformation is that, if anything,

the problem moved farther from the standard form used in Algorithm 1. It is necessary
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now to consider the the Lanczos algorithm applied to a generalized symmetric eigea-

problem, say Hz = _Mz, where for the moment we assume M positive definite. Were

we to reduce the problem to standard form by factoring M, the three term recurrence

(2) would become

(10) qj+xBj+x = M-X/aHM-X/'Qi - qjAi - q._-xB r.

If we premultiply (10) by M t12 and make the transformation of variables Qj = M-X/2Qj,

(10) becomes

(11)

MQj+xBj+x = M x/' M-X/'HO, j- M{_jAj- MQj-xB r

= HQj- MO, jAj- MQj_tB_.

Again the value of the transformation may not be clear. The matrices (_j are now

M-orthogonal, rather than orthogonal, since Q_'Qj = I implies Q_'MQj -- I. This is

also a property of the elge_vectors z of this generalized eigenproblem. Whatever form

is used for the Lanczos recurrence the approximate eigenvectors will be eventually be

computed in the subspace 8pan(Q). M-orthogonality will in fact introduce dl/_culties in

implementation, but the advantages of performing the recursion in the correct subspace

are well documented in [35]. The Lanczos recurrence in this subspace is:

1) Initialization:

Set Qo = O,

Set Bx = O,

Choose Rx and M-orthonormalize the columns of Rt to obtain Qt.

2) Lanczos Loop:

For j = 1,2,3... mazslp do

Uj = HQ, j- MQ, j-, Br
7



A s = QrMU_

Ws+ 1 - Us - MQsA s

solveMRj+l = WS+L

(_S+,Bj+, = RS+, (M-orthogonal factorization of RS+I )

End loop

Here all matrices are dimensioned in the same way as in the basic block Lanczos

algorithm given in the previous section. The matrix M is used at several occasions to

assure the M-orthogonality of the Lanczos vectors, i.e., to assure that

(12) Q 'MQs =/s,.

Any symmetric positive definite matrix M can be used to define an inner product

zrMy on the space of real n-vectors, which has the same properties as the ordinary

Euclidean inner product zry. The Lanczos vectors are now M-orthogonal with respect

to this inner product. This can be shown by an induction proof, which is identical to

the one in §2, only with the M-inner product used at the corresponding locations.

For the moment it appears that M -1/2 has disappeared from the standard recur-

rence, only to reappear in disguise as a solution operation. However, let us view (11)

again, knowing that H = M (K - o" M) -1 M. Substituting for H gives:

(13) MQ, s+IBs+, = M (K - a" M)-' MQ, s - MQjA s - MQ.j_,B_.

It is now evident that M appears in a/i of the terms in the recurrence. Formally we can

premultiply (13) by M -_ to obtain a recurrence

(14) Q.s+,Bj+I=(K - a" M) -1 MQs-Q.jAj-Q.j_IB _

in which only M, not M -1 appears. This, of course, has significant advantages in

general, but in particular allows us to apply the same recurrence even if M is semi-

definite. The justification for doing so appears later in this section.

At this point we shall drop the fiction of _. All operations will take place in this

space, and we shall no longer bother putting 'hats' on the matrices. The actual Lanczos

recurrence for solving (8) then becomes

Algorithm 2. Block Lanczos Algorithm for the Vibration Problem.

1) Initialization:

Set Qo ----0,

Set B1 = 0,

Choose R1 and orthonormalize the columns of Rl to obtain Ql

with QT(MQI)= _.

2) Lanczos Loop:

For j = I,2,3... mazstp do

Uj =(K - aM)-' (MQj)-Qj-IB r

A s =Uf(MQj)

8



R#+I = Uj - QjAj

Compute Qj+t and (MQj+I) such that

a) Qj+IB_+I = Rj+l

b) rQ_+I(MQ#+I) = lp

End loop

It should be observed that the algorithm as formulated requiresonly one multipli-

cation by M per step,to obtain (MQj). As noted, no factorizationof M is required.

However, the appropriate implementation of the laststep of the Lanczos loop isnot as

obvious as itmay seem. This M-orthogonalization of a setof p vectorswillbe discussed

in more detailin §5.

For furtherreference,some of the key formulas of the basic Lanczos recurrenceare

listedhere again for the spectral transformation block Lanczos algorithm. We have

already used the analog of the ordinary three term recurrence in (14). Combining allj

instancesof (14) intoone equation yields

(is) (K - _ M)-XMQI = Q.ITj + Qj+IBj+IE r,

where Qj, Tj, and Ej are defined as in (4). Premultiplying (15) by Q_'M and utilizing

the M-orthogonality of the Lanczos vectors it follows that

Q_M(K - a M)-IMQ.j = T_.

Hence, Tj is the M-orthogonal projection of (K - a M) -1 onto the block Krylov

subspace spanned by the columns of Qj. The eigenvalues of T# will approximate the

eigenvalues of (8). If (s,O) is an eigenpair of Tj, i.e.,

then define y = Q#s, and (y, 0) will be an approximate eigenpair of

M(K - o"M) -t My = #My.

However, we are interested in eigenvalue approximations to the original problem (7)

and not to the shifted and inverted problem (8). Formula (9) describes the relationship

between the spectra of the two problems; if 0 is an approximate eigenvaJue of Tj (9)

implies that

1

(16) u=o'+_

is an approximate eigenvalue of (7). Since the spectral transformation does not change

the eigenvectors, y is an approximate eigenvector for (7).

The a posteriori residual bound (6) does not generalize quite so cleanly. The com-

putation analogous to (6) results in

(17) ( K - _rM)-' My - yO = Qj+, Bi+ , Er s.
9



For 0 _ 0 itfollowsthat

and

(18)

1 My-(K-crM)-'y= _(K-o'M)Qj+IBi+IEfs,0

( K - vM)y = -_( K - o'M)Q_+I Bj+I E r.

The bounds in §5 willshow that in case 0 = 0 or for very small 0, we have a very

inaccurate approximation to an eigenpair.We thereforenever expect to compute any

residualbound in that case. The quantity on the rightiscomputable without explicitly

computing the eigenvectory,but only at the costofa multiplicationby K - o"M. This

isnot desirablebecause of the expense of such a multiplication,and more importantly,

because K - _rM isotherwise not used inthe recurrence.(Only the factorsof K - _rM

are assumed to be available.)In §5 we presenta betterway to obtain a residualbound.

The case of a semidefiniteM, i.e.,when there are vectorsz _ 0 such that

(19) Mz = 0,

remains to be considered. The formulation of the block Lanczos algorithm for the

vibration problem does not require the factorization of M. Hence the Lanczos algorithm

c_n be applied in this case without further modifications. However, the eigenproblem (7)

now has both finite and infinite eigenvalues. A direct modification leaves unanswered

questions about the effect of the infinite eigenvalues on the convergence of the finite

eigenvalues. Fortunately, we need only to make the obvious block modification of the

analysis in [27] to remove the infinite eigenpairs from the recurrence. Following [27] the

starting block for the Lanczos algorithm should computed as follows:

Algorithm 3. Computation of the Starting Block.

I) Choose ]_I

2) Compute R1 =(K - _M) -_ MR1

3) M-orthogonalize R1 = Q1Bo

Here B0 is an upper triangular p x p matrix, and Q1 is then the M-orthogonal block

of starting vectors.

It is shown in [9,18] that the eigenvectors corresponding to finite eigenvalues consist

of a component orthogonal to the null vectors of M and a component in the nullspace

of M. The second nullspace component is determined by an algebraic constraint from

the non-nullspace component. Nour-Omid et. al. [27] show that all of the Lanczos

vectors satisfy this constraint if the staxting vectors are chosen as above. Hence, the

Lanczos recurrence begins and remains entirely in the subspace spanned by the finite

eigenvectors. To summarize the result, the effect of Algorithm 3 is such that infinite

eigenvalues have no influence whatsoever on the block Lanczos algorithm in infinite

precision. However, recently it has been shown, there is the possibility that infinite

eigenvalue reappear in spite of Algorithm 3 in finite precision arithmetic [27]. Again, in
10



§5, we address how a final postprocessing step can purge the approximate eigenvectors

of these components.

The final point to be discussed in this section is the implementation of the spectral

transformation for the buckling problem

(20) Kz = AK6z,

where K is the symmetric positive semidefinite stiffness matrix and K6 is the symmetric

differential stiffness matrix. Usually, the eigenvalues closest to 0 are wanted. Thus, a

simple approach would be to interchange the roles of K and K6 and to compute the

largest eigenvalues of the problem

(21) K6z =/2Kz,

with/2 = 1/A by applying the simple Lanczos algorithm without shifts. This approach

has three drawbacks: it requires the factorization of the possibly semidefinite matrix

K, it does not allow for shifting, and the Lanczos vectors would not be in the same

subspace as the approximate eigenvectors. A new spectral transformation avoids these

problems. As before, the operator K - o" K_ is factored, but the Lanczos recurrence is

carried out using K orthogonality among the Lanczos vectors. This modification is easy

to implement by replacing each multiplication by the mass matrix M in the vibration

case with a multiplication by the stiffness matrix K in the buckling case; the rest of the

recurrence remaining the same. Hence, in the buckling case, the shifted and inverted

problem

(22) K(K - a'K6) -zKz = #Kz

is solved instead of the original problem (20). It is easy to check that (A, z) is an

eigenpair of (20) if and only if (_--:-;-,) is an eigenpair of (22). Hence the bucklin9

spectral trans/orrnaiion does not change the eigenvectors, and the eigenvalues are related

by

(23) = A _

This buckling spectral transformation has essentially the same advantages as the

vibration spectral transformation discussed earlier. Large eigenvalues of (20) are trans-

formed to a cluster of eigenvalues of (22) near 1. Eigenvalues near the shift o" are

transformed into large and well separated eigenvalues of (22), which are easily com-

puted by the Lanczos algorithm. The main difference is that a shift at _ = 0 is not

allowed, since all eigenvalues of (20) would be transformed to 1. Figure 2 shows the

effect of the buckling spectral transformation.

Note in Figure 2 that the clustered eigenvalues from ,X4 to ,Xs which lie around o- are

transformed to the well separated eigenvalues/24 to/2s. This assures rapid convergence

to these/2.
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Except for this di/_erent spectral transformation aU other implementation details

are the same for vibration and buckling analysis. In particular the issues involving

the M-orthogonallty of the Lanczos vectors apply equany to the K-orthogonal Lanczos

vectors in the buckling case.

The eigenvalues of Tj constructed by the block Lanczos algorithm with buckling

spectral transformation approximate the eigenvalues of (22). Hence, if (s,6) is an

elgenpair of Tj, i.e.

then an approximate eigenpair (u, y) of (20) is defined by

_8

0-1

and

(24) Y = QjJ.

The eigenvectors y obt,,;ned by (24) form a K-orthonormal set.

Since the stiffness matrix K is used in the initialization phase in the same way as

M in the vibration case, the sequence of Lanczos vectors will be orthogonal to the space

spanned by the eigenvectors corresponding to zero eigenvalues. Hence Tj will contain no

approximations to the exactly zero eigenvalues of K, which are also zero eigenvalues of

(20). This is desirable since in the buckling analysis usually the first nonzero eigenvalue

of (20) is wanted. The eigenvalues computed by the buckling spectral transformation

Lanczos method are truly distinct from zero. Bounds on the residuals of approximate

eigenpairs will be derived in §5.

12



4. The M-Orthogonal QR Factorization. Each step of the block Lanczos re-

currence generates an n x p matrix R, whose column vectors are to be orthogonnllzed

with respect to an inner product defined by a positive definite matrix M. Given R, we

must compute Q and B such that

I)R=QB,
2)QTMQ - r,
3) Qisnxp, and

4) B is p × p and upper triangular.

In the two standard engineering analyses M can be either the mass matrix (vibra-

tion analysis) or the stiffness matrix K (buckling analysis). Let M stand generically

for the matrix inducing the norm in either of these problems. Although M may be pos-

itive semidefinite, it is sufficient here to consider only positive definite M by implicitly

assuming that we work with the positive definite restriction of M on the orthogonal

complement of the nullspace of M.

The algorithm that we use here to generate the matrices Q and B above is a

generalization of the modified Gram-Schmidt process. The particular form we adopt

here is chosen so that the matrix M is only accessed to form matrix-block products,

never matrix-vector products. This greatly reduces cost in cases where multiplication

by M is expensive, either when there are many nonzeros or when M is not stored in

main memory. Let rx,r2,...rp be the columns of R, qx,qa,...qp the columns of Q and

{blj} be the entries of B, then the algorithm MMGS is:

Algorithm 4. M-orthogonal Modified Gram-Schmidt Orthogonalization (MMGS).
Initialization:

Given R = (rx,r2,... rp)

for i = 1,2,...p do

(mq)i _-- mri
end.

MMGS:

for i = 1,2,...p do

b..-
qi *- rl/b,

(raq)i 4-- (mq),/b,,

for j = i + l,...p do

b,i .- qf (mqb
rj _ r_/bijqi

(mq)j¢- (mq)j/blj(mq)i

end

end

This algorithm utilizes an additional set of p auxiliary vectors (mq)i, i = 1,...p,

which are initialized as Mrl, i = 1,...p. During the orthogonalization process these
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vectors are updated together with the vectors ri = 1,...p. At completion of MMGS

the vectors ri, i = 1,... p have been overwritten with the desired vectors qi, i = 1,... p;

further, the vectors (mq)i contain the vectors Mqi. The vectors Mqi are saved for use in

the next iteration of the Lanczos algorithm. As stated only one matrix multiplication

by M for a block of p vectors is required for this implementation of MMGS.

The basic algorithm MMGS must be modified to handle all special situations that"

can occur when orthogonalizing vectors produced by the block Lanczos algorithm.

MMGS is actually embedded in an outer loop. The whole orthogonalization procedure

is repeated if there is some indication t_aat the vectors are not robustly orthogonal.

Following [7] MMGS is repeated up to p times whenever the norm of one of the r i

after the orthogonMization is less than 1/times the norm of the original rj . Currently

7/= _/'2/2. In this sense MMGS is an iterative procedure. The choice of 1/guarantees

that an orthonormal set of vectors is obtained.

There are several situations where MMGS may encounter numerical difficulties.

The Lanczos algorithm may produce a a rank deficient set of vectors rj if the space of

linearly independent vectors is exhausted, if the starting block contains a dependency

by chance, or if the shift is very close to an eigenvalue. All three cases lead to rank

deficiencies of different numerical character. Our implementation of MMGS detects

these deficiencies and produces the appropriate response. For more details see [18].

5. Analysis of the Block Trldiagonal Matrix Tj. The large generalized eigen-

value problem is reduced by the block Lanczos algorithm to an eigenvalue problem of

the form

(25) Tj. =

Here T i is a block tridiagonal matrix as given in formula (3). Because Bi is an upper

triangular matrix, 7"/is a symmetric jp × jp band matrix of bandwidth 2p + 1.

The eigenvalue problem for T_ is solved by first reducing T_ to tridiagonal form, and

then by applying the tridiagonal QL algorithm. For the single vector Lanczos algorithm

a very efficient implementation of the analysis of the tridiagonal matrix is given by

Parlett and Nour-Omid [32]. Block generalizations of the approach in [32] have yet to

be found; as a result we use a more straight forward approach. The implementations

used here are slight modifications of corresponding subroutines in EISPACK [38,13].

Only the bottom p entries of the eigenvectors of Ti are needed for the evaluation of

the residual bound (18) at any given block Lanczos step. Thus, it is unnecessary to

compute and store the whole eigenvector matrix for each T i. Instead only the last p

components of this matrix are computed. This reduces considerably both computation

and storage requirements for each Lanczos step. Only p2j words are needed as opposed

to (pj)2 for the full eigenvector matrix.

The full eigenvectors of (25) are computed only at the very end of the Lanczos

run. These are used to obtain approximate eigenvectors for the vibration and buckling

analysis according to

(28) y = Qjs.
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We used unmodified routines from SISPACK to obtain the full eigenvector matrix for

Tj.
Eigenvectors are not needed during the Lanczos iteration, since error hounds on the

accuracy of the computed eigenvalues can be computed without an explicit computation

of the eigenvectors. These bounds are then used to determine which eigenvectors are

accurate enough to he computed at the end of the Lanczos iteration. Let us now

readdress the issue of evaluating the accuracy of intermediate approximations in the

Lanczos algorithm without explicitly computing approximate eigenvectors of (7). Recall

that for vibration analysis the following-relation (17) holds:

(K - <r M) -1 My - yO= Qj+,Bj+IErs

Therefore, since rQj+IMQi+I = I:

JIM(K- <TM)-'M - MyOIJM-, = ][MQj+xBi+,ErsIIM -,

= [[Bj+xErslJ -Z_.

Note that _j is easily computed for each eigenvector s, as the Euclidean norm of the

product of the upper triangular matrix Bj+x with the last p components of s. We now

apply a theorem on the error in eigenvalue approximations from [30] (pg. 318) to obtain:

1 ol < IIM (K - o" M) -x My - MyOIIM-, _ _j
(27) IA - _' IIMYlIM-'

Formula (27) gives a bound on how well the eigenvalues of Tj approximate the eigen-

values of the shifted and inverted operator. What is really needed is a bound on the

error after backtransforming the eigenvalues according to (16), i.e., on J)_ - vl.

Following [11], we use (27) to find

]_ - ,,I
1

= I_(X - ,,)(,x 1

< T_I,_ ,,l_j = _.

Hence

o)1

(28) I_ " _,I< _,

and (28) shows that we require only a moderately small _j to guarantee a good approx-

imate eigenvalue v when 0 is large, that is, for ,_ close to the shift o-.

The bound (28) can be improved for well separated eigenvMues. Define the gap 7

as follows:

1 1
(29) 7 = min J J,

x,_ Ai - o" A - o"
15



Applying the same argument above to another theorem from [30](pg. 222) results in

(30) I,_ - ,,I < _
- 8-T'_'

The gap 7 will be large if the eigenvalues are weLl separated, and (30) will usually be

an improvement over (28). For clustered eigenvalues (28) will be better, hence in our

implementation we use

(31) I,_ ,,I _ " _ _,}
-- _ mln{ _'/, 0,.y

For multiple eigenvalues the definition of "7 in (29) is modified; the gap between sets of

multiple eigenvalues is used. In practice only an approximation to "y can be computed,

which we derive from the shifted and inverted eigenvalues of Tj.

Similar error bounds can be derived for the buckling analysis. Let _j be defined as

before and define % as

(32) % -= min0_ Ai_ __A I,

Then one obtains

(33) ]A - vJ <
Io.1_

(0 - 1)=

as the simple error bound, and

(34) [A - vl _ Io'1/_
(O- 1)"rb

as the refined gap error bound. As in the vibration case, the minimum of (33) and (34)
is chosen in the actual implementation.

Because the spectral transformation preserves,the eigenvectors, there is no imme-

diate need to transform the approximate eigenvector y as computed by (26). However,

we can find improved eigenvector approximations by using the so-caned Ericsson-Ruhe

correction [11]. This has the additional benefit [27] of purging from y any compo-

nents in the directions of the infinite eigenvectors (or eigenvectors corresponding to

zero eigenvalues in the buckling analysis). The correction ensures that the approximate

eigenvectors are uncontaminated by the effects of a semidefinite M (K).

Let v = cr + _ be the computed eigenvaiue, then we formaLly apply one step of

inverse iteration with y

(K- o'M)_. = My

and use (17) to obtain

= (K - o'M) -1 My

= yO + Qj+_Bj+_Ers.
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The vector

(35) z = = y + Qj+IBj+IE s,

can be obtained easily by adding a linear combination of the next block of Lanczos

vectors. Tl, is gives a better approximation to the eigenvector of the vibration problem

very cheaply. The corresponding correction for the buckling analysis is given by

z=y+ o - 1Qj+zB_+lErs"

6. Global Loss of Orthogonality and Reorthogonalization. So far the block

Lanczos algorithm has been discussed in the context of exact arithmetic. Most of the

relationships derived here also hold for the corresponding computed quantities of the

Lanczos algorithm in finite precision arithmetic up to errors of about the round-off level

of the machine. The notable exception is the global loss of orthogonality among the

computed Lanczos vectors. According to (12) QrMQj should equal I_. In reality, using

finite precision arithmetic and no reorthogonalization, QTMQi can be quite different

from the identity matrix. Consider the finite precision Lanczos recurrence

(36) Qj+IBj+I = K=,MQj - QjA i - Qj-IB f + Fi,

where Fj represents the roundoff error introduced at step j, and K,, - (K - ce M) -_.

Then for k < j - 1

Q_MQi+IB_+I = QTMK=. MQj - QTMQjAj

- QTMQI_,B f + QTMFj.

In an ideal setting all the quantities Q_MQj would be zero and drop out. However,

under the influence of roundoff, these quantities cannot be ignored. Therefore we define

- QTMQj,

and first obtain by premultiplying (36) by QI, that

(37) Wj+z_,B.i+, = QTMK. MQj - Wj_,Aj - Wj__kB r + QrMFj.

Because K=. is symmetric, we can obtain the transpose of Q_MK,, MQj by premultiply

the occurrence of (36) with j = k by Q_M:

(38) QTMK=, MQh = Wjj,+tBk+, + Wj=jAj - W_=_1jB T + QTMF_.

Substitute (38) into (37) to obtain:

(39) - _VjkAj -- _'Vj_lkB T -Jc-ejk.
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Here Gjj, =_ QrMFj - Fr_MQj represents the 1ocai roundoff error. Formula (39)

explains the global growth of the loss of orthogonality. We now use (39) to estimate

the loss of orthogonality among the Lanczos vectors. Take norms in (39) to show that

llW_+,kll<_ tlB;_,II(IIBh+,IItIW_,+,II
+llB, llllWih-,ll+ IIBillllWj-,,ll

(40) +(llAill+ IIAhtl)IIWj,tl+ IlCjhll).

Th_sboundis sim,_ateaby thefoUowing,recurrence,wherew_,isa boundon IIW,,,tI:
Algorithm 5. Simulation of Loss of Orthogonality.

Initialize:

eo _= ep_/'n, where e -roundoff unit

and n = number of degrees of freedom

W31 -_- 6m_ 2

Loop:

for j = 2, 3,... maxstp do

wj+lj+l = e,

wj+xj = eo

for k = 1,...j- 1 do

end

end

In this algorithm

_h -IIA, II
_, -IIB, II
/91, = l/o'p(Bi,), where o'p(Bi,) is the smallest singular value of Bi,.

We take wj+to = 0 and wj+l-i = 0 where they occur. The wjl, computed by Algorithm

5 simulate the bound given by (40). Previous results [37] show that such a simulation

provides an order of magnitude estimate of growth of the loss of orthogonaiity.

The estimate of the loss of orthogonaiity obtained from the w-recurrence is used

to determine when reorthogonalization is necessary. Previous results [30,31,36] indicate

that reorthogonalization should occur whenever

(41) maxwj+lh > _/'e.
k

The reorthogonalization should be carried out with both the block of vectors Q1 and

Qj+I. Hence, we have implemented the following algorithm for maintaining orthogo-

nallty, called partial reorthogonalization (PRO) [37]:

Algorithm 6. Partial Reorthogonalization.
18



At each Lanczos step, after computing Q_+t and Bj+x do:

Update the w-recurrence according to Algorithm 5;

Wmam --_ maxhwj+lk;

If _a,.,,.. > V'7 then

fork= t,...j-ldo

orthogonalize Q_ against Qk

orthogonalize Q j+l against Qk

end;

orthogonalize Qj+t against Q_

update w-recurrence:

wj+lk = wj_ = e,,k = 1,...j;

end if;

Note that the orthogonaiization of Qj and Q#+I involves M-inner products. This

requires the storage of both the Lanczos vectors and M.Lanczos vectors in secondary

storage, or, alternatively, reapplying M to the Lanczos vectors. The appropriate form

depends on cost.

A particular artifact of the block Lanczos algorithm appears in the computation of

wj+x#-t. By Algorithm 5,

The leading term inside the parentheses on the right side is

_j,. = ,_(B./)e.,

where _(Bj) is the condition number of Bj. The analysis of the ordinary Lanczos algo-

rithm has unity corresponding to the term s(Bi). The loss of orthogonality occurs more

rapidly in the block Lanczos algorithm, particularly when s(B_) is significantly larg_:r

than one, but also in general. An inexpensive correction is suggested in [22]: at each

step a local reorthogonalization between Qi+t and Qj is performed. This ensures that

e, orthogonality holds between successive blocks of Lanczos vectors. Note that a local

orthogonalization step is also performed on completion of a partial reorthogonalization.

The local reorthogonalization of block Q_+x against Qj assures that the Lanczos

vectors locally are orthgononal to working precision. This is reflected in our choice of

_, for the term oJj+x i in Algorithm 5. Without local reorthgonalization this term would

have to be set to e,/3j + IBj. The strong effect of the local orthogonality on the global

loss of orthogonality for the block Lanczos recurrence has been observed by Lewis [22].

A different type of loss of orthogonaLity occurs in the context of the shifted and

inverted Lanczos algorithm. It is possible that, after computing some eigenvalues with

shift o"1, the same eigenvalues and vectors are computed again when using o'_. This

presents a severe complication, requiring a mechanism for identifying duplicate copies

from different runs. In addition, we waste resources recomputing eigenvectors. In or-

der to avoid this complication and the duplicate computation we have implemented
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another reorthogonalization scheme ezternal selective orthogonalization (external SO).

External SO is an efficient way of keeping the current sequence of Lanczos vectors or-

thogonal to previously computed eigenvectors, and thereby avoiding the recomputation

of eigenvalues that are already known.

In theory it would be sufficient to orthogonalize the starting block against known

eigenvectors, because this would guarantee that all subsequent Lanczos vectors are

orthogonal as well. In practice, however, this does not hold. A global loss of orthog-

onality occurs, similar to the one among the Lanczos vectors themselves; in addition,

the computed eigenvector is not exact. The contribution of both sources of error, which

ultimately may lead to the recomputation of eigenvalues and vectors, is analyzed below.

Let (v, y) be a computed eigenpair of (7). Premultiply (39) by yrM to obtain

yrMQ_+xBj+x = yrMK. MQ_ - yrMQjAj

(42) - yTMQj_IBf + yrMFj,

which includes the effect of the local error term. Since (v, y) is only an approximate

eigenpair, it holds that

(43) (K - vM)y = d

with d small. From (43) it follows that

(44)
1

(K - a" M)-lMy = K.My - y
V _ (7

- K.d

We combine (44) and (42) to find

yrMQi+xBj+x = l yTMQj -- yrMQiA i
V _ a"

(45) - yrMOj_xBr - drK_ MQj + yTMFj.

We take norms of both sides of (45) to compute a bound on the loss of orthogonallty

of the Lanczos vectors with respect to a previously computed eigenvector:

[]yTMQI+IH <_ _i+l(ll(u - a)-lI - Aj[][[y TMQiH +  Jlly rMQ -IH + 5j),

where 6j accounts for both the local roundoff term and the residual of the approximate

eigenpair (v,y). As with PRO, we define a recurrence relation for a quantity rj that

estimates the loss of orthogonality of the Lanczos vectors with respect to y. In the

recurrence rj is defined be:

(46) rj+x = _j+t(a_rj + _rj-x +/_),

where we set initially 1"o -- 0 and rt = ev/_. We set//to the a posteriori error bound

(31) or (33) and (34) obtained from the Lanczos run in which (u,y) was computed. 3_

and _i+_ are defined as in Algorithm 5, and a,,o_ - t[(u - _,)-1I - AjN.
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If rj+l >_ x/_ then an external selective orthogonaLization is performed in order to

ensure that the sequence of Lanczos vectors remains orthogonal to working precision

to the computed eigenvectors. External selective orthogonalization is implemented as

follows:

Algorithm 7. External Selective Orthogonalization.

before the Lanczos iteration:

determine the set of SO-vectors (eigenvectors for selective

orthogonalization) _

orthogonallze Q1 against the SO-vectors.

at each Lanczos step j do:

update the r-recurrence according to (46) for each SO-vector;

if (j = 2 or r_ has been greater than v_ or r_+l >_ x/_ ) then

orthogonalize Q_+l against V ;

set G+t = e.;

end if

It is unnecessary to perform external SO against all previously computed eigen-

vectors. From (45) it is evident that one of the main driving forces in the loss of

orthogonality is (v - o') -1. Loss of orthogonality will mostly occur in the direction of

eigenvectors corresponding to eigenvalues close to the new shift. Other eigenvectors are

unlikely to have any considerable impact on orthogonatity. Further, only a few eigen-

vectors, again usually those close to the new shift, need be considered in order to avoid

confusing new eigenvectors with old. In our implementation of external SO we choose a

set of sentinel eigenvalues such that we can assume that all eigenvalues appear beyond

the sentinels are already known. Such eigenvalues beyond the sentinels are discarded

in the analysis of the block tridiagonal system. More details on the choice of sentinels

are presented in [18]. The set of eigenvectors used for external SO becomes essentially

the eigenvectors corresponding to the sentinels and those corresponding to any other

known eigenvalues closer to the shift.

The orthogonalizations involve again both V and My. In order to avoid the repeated

computation of My, all SO vectors are premultiplied by M and the result is stored on the

same random access file as the eigenvectors y. This computation is performed before the

actual Lanczos run begins. The actual interplay among the various orthogonaLization

schemes is discussed in detail in [18].

7. Cost Analysis and Termination of a Lanezos Run. The block Lanczos

algorithm described above is part of a code which includes a shifting strategy [181,

which chooses a sequence of shifts _ri to efficiently compute the desired eigenvalues. In

this environment we expect to make a number of Lanczos runs with different shifts.

There are four ways in which a given Lanczos run can terminate without error. These

are:
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1. All required eigenvalues have converged. There is no need to compute further

and control is returned to the shifting strategy.

2. Eigenvalues farther from the shift appear to be converging slowly. The esti-

mated cost for computing them in the current Lanczos run is great enough that

a new shift should be chosen.

3. Resources allocated to this run, either space or time, have been exhausted.

4. The Bj+l-block is iU-conditioned or singular. In this case a continuation of

the Lanczos run is either numerically difficult or impossible. Singular or ill-

conditioned Bj+l-blocks can be encountered for the following reasons:

s The shift is very close to an eigenvalue.

• The effective space of Lanczos vectors is exhausted m we cannot compute

more orthogonM vectors than the problem has finite eigenvalues.

• Dependencies within the starting block cause a singular Bj+l at some later

stage.

All these conditions can be identified, and the appropriate measures taken to assure

an orderly termination of a given Lanczos run.

The most common reason for termination is that computing more eigenvalues in

the current run is inefficient. This decision to is based on a cost analysis that is carried

out at each Lanczos step. The cost analysis assumes that a measure of the real user

cost is available, which is used to monitor the cost of the various operations in the

algorithm. This is used in a model of the Lanczos algorithm, where the observed

changes in unconverged eigenvalues are used to estimate future convergence. Normally,

eigenvalues far from the shift converge slowly and require a large number of steps. At

the same time, partial reorthogonaJJzation occurs primarily as a function of the nearness

of other eigenvalues to the shift. Thus, PRO occurs in a predictable manner, with a

cost increasing like O(j_). Both the cost of PRO and of the matrix-block solves and

multiplies will be large for distant eigenvalues. Our model attempts to locate a point

in an individual run where the average cost per eigenvalue is minimized. This is a

heuristic attempt to minimize the average cost for all eigenvalues. The effectiveness of

the heuristic is demonstrated in [18], where more details are given.

8. Numerical Results. The intent of this section to provide some indication of

the size and type of problems that can be solved with an effective block Lanczos code.

Our emphasis here is on sparse eigenproblems, although we should note that our code

has been used to solve large dense eigenvalue problems from quantum mechanics. Its

effectiveness, as documented in [16], extends and verifies predictions by Paige [28] on

the use of the Lanczos algorithm for dense eigenproblems.

Our code has been integrated into the structural analysis package MSC/NASTRAN

and ported to a variety of computing environments using the NASTRAN internal linear

equation solver. Some results specific to this environment are published elsewhere [17].

The results reported here were obtained using the SPARSPAK [14] general sparse linear

equation solver and the multiple minimum degree reordering [26] on the Cray X-MP/24

at Boeing Computer Services. SPARSPAK on this machine has been modified for

improved vectorization as described in [24]. Similar results using the same code and an
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TABLE I

Numerical Results on the Cray X-MP

Problem Title

(execution times in seconds).

Platzman's small problem

Platzman's large problem

Reactor Containment Floor

Sports Arena
767 Bulkhead

Columbia Center

Order Eigenproblem Time

362 164 e.v. in interval 6.85

1919 648 e.v. in interval 83.10

1922 200 smallest e.v. 19.45

3562 10 smallest e.v. 8.43

13992 one buckling mode 268.3

15439 10 smallest e.v in 242.8

a large cluster

SCS-40 are reported in [1,19].

Table 1 lists the performance of the block Lanczos code on the Cray X-MP/24 on

several symmetric generalized eigenproblems. These problems are available as part of

the HarweU-Boeing sparse matrix collection [8]. The numbers in Table 1 are most im-

portant when placed in historical perspective. Platzman's problems are finite difference

discretizations of an oceanographic model for tidal movements. They were formulated

in the mid 1970s by G. W. Platzman [3] and proved to very difficult eigenproblems at

the time. One of their characteristics is that all of the eigenvalues appear as pairs; the

other important characteristic is that the desired eigenvalues are not at either end of the

spectrum. In [22] in 1976 the eigenvalues in the interval [.0001, .24] were computed with

great difficulty. The eigenvalues in the interval [.000025, .0001] were also of interest but

impossible to compute. The spectral transformation provides a powerful mechanism for

extracting these interior eigenvalues. However, the STLM code published by Ericsson

and Ruhe [10] is unable to cope with the multiplicities [25]. The block shifted Lanczos

algorithm used only a few seconds of computer time and required no user intervention.

The next three problems are vibration analyses from structural engineering. The

first of these demonstrates the value of shifting. The reactor containment floor problem

was first solved in 1981 using an unshifted single Lanczos code [23]. This required

over 900 seconds on a Cray-lS computer. The speed-up from hardware improvements

is negligible compared to the effect of shifting. The Sports Arena also was solved in

1981 with the above mentioned code in 27 seconds. Shifting does not come into play

because the number of eigenvalues required is small. Hence, more of the speed-up seen

here can be attributed to hardware improvements, but there is still a clear effect from

algorithmic improvements. The Columbia Center problem arose from a full scale finite

element model of a 76 story skyscraper in Seattle. The model was abandoned in 1981

because its memory requirements were too large for the machines then available. It was

solved for the first time in 1986 using the new algorithm on the X-MP. Unfortunately

the finite element model was never completed by the engineers and the eigenvalue

problem had 115 zero eigenvalues (rigid body modes). This modeling error proved to

a remarkable demonstration of the robustness of the block shifted Lanczos code, which

was able to compute all of the 115 zero eigenvalues.
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Historical

Problem Title Year

Platzman's 1976

small problem

1983

Platzman's 1976

large problem 1986

Reactor 1981

Sports Arena 1981

767 Bulkhead 1985

Columbia Center 1981

1986

TABLE 2

Perspective on the Results in Table 1.

History

all eigenvalues computed sen_automatically

with extremely long runs[22]

STLM fails on multiple eigenv_ues [25]

some eigenvalues computed semiautomatically

eigenvalu.es in [.000025, .0001] found

for first time with new code

solved in _ 900 sec. on Cray-IS using code in [23]

solved in 27.1 sec. on Cray-IS using code in [231

new code uncovered modeling error

large scale model abandoned

abandoned model solved, multiplicity of 115

for zero eigenvalue correctly determined

The 767 bulkhead problem is an example of a buckling analysis. Only one eigenpair,

the fundamental mode, was needed. The eigenanalysis was used successfully to find an

error in a finite element model, even though the problem posed extreme numerical

difficulties, with the fundamental eigenvalue at rounding level compared to the largest

eigenvalue of the problem. The alternative mechanisms for locating the engineering

error in this model would have required a difficult and painstaking engineering review,

and a great deal of engineering time.

Three of these problems are used to illustrate the distribution of computational re-

sources. The computationally intensive parts of the algorithm can be any of: the sparse

matrix reordering; matrix factorization, solution, and multiplication; the block tridiag-

onal matrix analyze step; and the orthogonalization steps. Except for the block tridi-

agonal matrix analyze step, our code is based on computational kernels in VectorPa, k

[2], a package of highly optimized computational kernels for scientific and engineering

applications on Cray computers.

A breakdown of the percentage of execution time spent in various parts of the code

is given in Table 3. Entries of less than 5% are not included in the table. These results

are typical of large problems in that most of the execution time is spent in sparse matrix

factorization and solve operations. Orthogonalization and block tridiagonal analysis are

only significant if the individual Lanczos runs are long and many eigenvalues are required

as in the reactor problem (which is also relatively small). The 767 bulkhead problem

illustrates that matrix multiplication can play a major role in buckling problems. The

buckling spectral transformation requires repeated multiplications with the stiffness

matrix, which is generally less sparse than the mass matrices of vibration analysis.

We conclude that the current version of the block Lanczos algorithm has reached a

very satisfactory performance, and that further algorithmic performance improvements

for the dynamic analysis of large structures wiLl be derived from more efficient sparse
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TABLE 3

Distribution of Execution Time

Problem Order Factor Solve Mult.

Reactor 10% 37%

767 10% 52% 23%

Columbia 5% 42% 40%

Eigen

Analysis

3O%

Orthogo-

nalization

5%

matrix algorithms for ordering, factoring, and solving large linear systems on advanced

architecture computers.

9. Summary. Several important results about the Lanczos algorithm have been

combined for the first time in a production code for solving large sparse eigenvalue prob-

lems. The synergism of these results leads to an ei_cient and robust implementation,

which can solve previously intractable problems. The block shifted Lanczos algorithm,

coupled with the speed of a supercomputer such as the Cray X-MP, provides a very

effective solution of large symmetric generalized eigenproblems for sparse matrices.
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